
Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 1

www.nand2tetris.org

Building a Modern Computer From First Principles

Virtual Machine
Part II: Program Control

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 2

Where we are at:

Assembler

Chapter 6

H.L. Language
&

Operating Sys.

abstract interface

Compiler

Chapters 10 - 11

VM Translator

Chapters 7 - 8

Computer
Architecture

Chapters 4 - 5
Gate Logic

Chapters 1 - 3 Electrical
Engineering

Physics

Virtual
Machine

abstract interface

Software
hierarchy

Assembly
Language

abstract interface

Hardware
hierarchy

Machine
Language

abstract interface

Hardware
Platform

abstract interface

Chips &
Logic Gates

abstract interface

Human
Thought

Abstract design

Chapters 9, 12

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 3

The big picture

. . .
RISC

machine

VM language

other digital platforms, each equipped
with its VM implementation

RISC
machine
language

Hack
computer

Hack
machine
language

CISC
machine
language

CISC
machine

. . .
written in

a high-level
language

Any
computer

. . .

VM
implementation

over CISC
platforms

VM imp.
over RISC
platforms

VM imp.
over the Hack

platform

VM
emulator

Some Other
language

Jack
language

Some
compiler Some Other

compiler

Jack
compiler

. . .Some
language

. . .

Chapters
1-6

Chapters
7-8

Chapters
9-13

A Java-based emulator
is included in the course
software suite

Implemented in
Projects 7-8

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 4

The VM langauge

Goal: Complete the specification and implementation of the VM model and language

Method: (a) specify the abstraction (model’s constructs and commands)
(b) propose how to implement it over the Hack platform.

Arithmetic / Boolean commands

add

sub

neg

eq

gt

lt

and

or

not

Memory access commands

pop x (pop into x, which is a variable)

push y (y being a variable or a constant)

Arithmetic / Boolean commands

add

sub

neg

eq

gt

lt

and

or

not

Memory access commands

pop x (pop into x, which is a variable)

push y (y being a variable or a constant)

Program flow commands

label (declaration)

goto (label)

if-goto (label)

Function calling commands

function (declaration)

call (a function)

return (from a function)

Program flow commands

label (declaration)

goto (label)

if-goto (label)

Function calling commands

function (declaration)

call (a function)

return (from a function)

previous
lecture

this
lecture

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 5

The compilation challenge

class Main {

static int x;

function void main() {

// Inputs and multiplies two numbers

var int a, b, c;

let a = Keyboard.readInt(“Enter a number”);

let b = Keyboard.readInt(“Enter a number”);

let c = Keyboard.readInt(“Enter a number”);

let x = solve(a,b,c);

return;

}

}

// Solves a quadearic equation (sort of)

function int solve(int a, int b, int c) {

var int x;

if (~(a = 0))

x=(-b+sqrt(b*b–4*a*c))/(2*a);

else

x=-c/b;

return x;

}

}

class Main {

static int x;

function void main() {

// Inputs and multiplies two numbers

var int a, b, c;

let a = Keyboard.readInt(“Enter a number”);

let b = Keyboard.readInt(“Enter a number”);

let c = Keyboard.readInt(“Enter a number”);

let x = solve(a,b,c);

return;

}

}

// Solves a quadearic equation (sort of)

function int solve(int a, int b, int c) {

var int x;

if (~(a = 0))

x=(-b+sqrt(b*b–4*a*c))/(2*a);

else

x=-c/b;

return x;

}

}

Source code (high-level language)

Our ultimate goal:

Translate high-level
programs into
executable code.

Compiler

0000000000010000

1110111111001000

0000000000010001

1110101010001000

0000000000010000

1111110000010000

0000000000000000

1111010011010000

0000000000010010

1110001100000001

0000000000010000

1111110000010000

0000000000010001

0000000000010000

1110111111001000

0000000000010001

1110101010001000

0000000000010000

1111110000010000

0000000000000000

1111010011010000

0000000000010010

1110001100000001

0000000000010000

1111110000010000

0000000000010001

...

0000000000010000

1110111111001000

0000000000010001

1110101010001000

0000000000010000

1111110000010000

0000000000000000

1111010011010000

0000000000010010

1110001100000001

0000000000010000

1111110000010000

0000000000010001

0000000000010000

1110111111001000

0000000000010001

1110101010001000

0000000000010000

1111110000010000

0000000000000000

1111010011010000

0000000000010010

1110001100000001

0000000000010000

1111110000010000

0000000000010001

...

Target code

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 6

The compilation challenge / two-tier setting

if (~(a = 0))

x = (-b+sqrt(b*b–4*a*c))/(2*a)

else

x = -c/b

if (~(a = 0))

x = (-b+sqrt(b*b–4*a*c))/(2*a)

else

x = -c/b

Jack source code

push a

push 0

eq

if-goto elseLabel

push b

neg

push b

push b

call mult

push 4

push a

call mult

push c

call mult

call sqrt

add

push 2

push a

call mult

div

pop x

goto contLable

elseLabel:

push c

neg

push b

call div

pop x

contLable:

push a

push 0

eq

if-goto elseLabel

push b

neg

push b

push b

call mult

push 4

push a

call mult

push c

call mult

call sqrt

add

push 2

push a

call mult

div

pop x

goto contLable

elseLabel:

push c

neg

push b

call div

pop x

contLable:

Compiler

VM (pseudo) code

0000000000010000

1110111111001000

0000000000010001

1110101010001000

0000000000010000

1111110000010000

0000000000000000

1111010011010000

0000000000010010

1110001100000001

0000000000010000

1111110000010000

0000000000010001

0000000000010000

1110111111001000

0000000000010001

1110101010001000

0000000000010000

1111110000010000

0000000000000000

1111010011010000

0000000000010010

1110001100000001

0000000000010000

1111110000010000

0000000000010001

0000000000010010

1110001100000001

...

0000000000010000

1110111111001000

0000000000010001

1110101010001000

0000000000010000

1111110000010000

0000000000000000

1111010011010000

0000000000010010

1110001100000001

0000000000010000

1111110000010000

0000000000010001

0000000000010000

1110111111001000

0000000000010001

1110101010001000

0000000000010000

1111110000010000

0000000000000000

1111010011010000

0000000000010010

1110001100000001

0000000000010000

1111110000010000

0000000000010001

0000000000010010

1110001100000001

...

VM translator

Machine code

� We’ll develop the compiler later
in the course

� We now turn to describe how to
complete the implementation of
the VM language

� That is -- how to translate each
VM command into assembly
commands that perform the
desired semantics.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 7

// Computes x = (-b + sqrt(b^2 -4*a*c)) / 2*a

if (~(a = 0))

x = (-b + sqrt(b * b – 4 * a * c)) / (2 * a)

else

x = - c / b

// Computes x = (-b + sqrt(b^2 -4*a*c)) / 2*a

if (~(a = 0))

x = (-b + sqrt(b * b – 4 * a * c)) / (2 * a)

else

x = - c / b

Typical compiler’s source code input:

The compilation challenge

arithmetic
expressions

function call and
return logic

boolean
expressions

program flow logic
(branching)

How to translate such high-level code into machine language?

� In a two-tier compilation model, the overall translation challenge is broken between a
front-end compilation stage and a subsequent back-end translation stage

� In our Hack-Jack platform, all the above sub-tasks (handling arithmetic / boolean

expressions and program flow / function calling commands) are done by the back-end, i.e. by
the VM translator.

(previous lecture)(previous lecture)(this lecture) (this lecture)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 8

Lecture plan

Arithmetic / Boolean commands

add

sub

neg

eq

gt

lt

and

or

not

Memory access commands

pop x (pop into x, which is a variable)

push y (y being a variable or a constant)

Arithmetic / Boolean commands

add

sub

neg

eq

gt

lt

and

or

not

Memory access commands

pop x (pop into x, which is a variable)

push y (y being a variable or a constant)

Program flow commands

label (declaration)

goto (label)

if-goto (label)

Function calling commands

function (declaration)

call (a function)

return (from a function)

Program flow commands

label (declaration)

goto (label)

if-goto (label)

Function calling commands

function (declaration)

call (a function)

return (from a function)

previous
lecture

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 9

Program flow commands in the VM language

How to translate these three abstractions into assembly?

� Simple: label declarations and goto directives can be
effected directly by assembly commands

� More to the point: given any one of these three VM
commands, the VM Translator must emit one or more
assembly commands that effects the same semantics
on the Hack platfrom

� How to do it? see project 8.

label c // label declaration

goto c // unconditional jump to the
// VM command following the label c

if-goto c // pops the topmost stack element;
// if it’s not zero, jumps to the
// VM command following the label c

label c // label declaration

goto c // unconditional jump to the
// VM command following the label c

if-goto c // pops the topmost stack element;
// if it’s not zero, jumps to the
// VM command following the label c

In the VM language, the program flow abstraction is

delivered using three commands:

VM code example:

function mult 1

push constant 0

pop local 0

label loop

push argument 0

push constant 0

eq

if-goto end

push argument 0

push 1

sub

pop argument 0

push argument 1

push local 0

add

pop local 0

goto loop

label end

push local 0

return

function mult 1

push constant 0

pop local 0

label loop

push argument 0

push constant 0

eq

if-goto end

push argument 0

push 1

sub

pop argument 0

push argument 1

push local 0

add

pop local 0

goto loop

label end

push local 0

return

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 10

Lecture plan

Arithmetic / Boolean commands

add

sub

neg

eq

gt

lt

and

or

not

Memory access commands

pop x (pop into x, which is a variable)

push y (y being a variable or a constant)

Arithmetic / Boolean commands

add

sub

neg

eq

gt

lt

and

or

not

Memory access commands

pop x (pop into x, which is a variable)

push y (y being a variable or a constant)

Program flow commands

label (declaration)

goto (label)

if-goto (label)

Function calling commands

function (declaration)

call (a function)

return (from a function)

Program flow commands

label (declaration)

goto (label)

if-goto (label)

Function calling commands

function (declaration)

call (a function)

return (from a function)

previous
lecture

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 11

Subroutines

Subroutines = a major programming artifact

� Basic idea: the given language can be extended at will by user-defined
commands (aka subroutines / functions / methods ...)

� Important: the language’s primitive commands and the user-defined commands
have the same look-and-feel

� This transparent extensibility is the most important abstraction delivered by
high-level programming languages

� The challenge: implement this abstraction, i.e. allow the program control to flow
effortlessly between one subroutine to the other

“A well-designed system consists of a collection of black box modules,
each executing its effect like magic”
(Steven Pinker, How The Mind Works)

// Compute x = (-b + sqrt(b^2 -4*a*c)) / 2*a

if (~(a = 0))

x = (-b + sqrt(b * b – 4 * a * c)) / (2 * a)

else

x = - c / b

// Compute x = (-b + sqrt(b^2 -4*a*c)) / 2*a

if (~(a = 0))

x = (-b + sqrt(b * b – 4 * a * c)) / (2 * a)

else

x = - c / b

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 12

Subroutines in the VM language

The invocation of the VM’s primitive
commands and subroutines
follow exactly the same rules:

�The caller pushes the necessary
argument(s) and calls the command /
function for its effect

�The called command / function is
responsible for removing the argument(s)
from the stack, and for popping onto
the stack the result of its execution.

function mult 1

push constant 0

pop local 0 // result (local 0) = 0

label loop

push argument 0

push constant 0

eq

if-goto end // if arg0 == 0, jump to end

push argument 0

push 1

sub

pop argument 0 // arg0--

push argument 1

push local 0

add

pop local 0 // result += arg1

goto loop

label end

push local 0 // push result

return

function mult 1

push constant 0

pop local 0 // result (local 0) = 0

label loop

push argument 0

push constant 0

eq

if-goto end // if arg0 == 0, jump to end

push argument 0

push 1

sub

pop argument 0 // arg0--

push argument 1

push local 0

add

pop local 0 // result += arg1

goto loop

label end

push local 0 // push result

return

Called code, aka “callee” (example)

...

// computes (7 + 2) * 3 - 5

push constant 7

push constant 2

add

push constant 3

call mult

push constant 5

sub

...

...

// computes (7 + 2) * 3 - 5

push constant 7

push constant 2

add

push constant 3

call mult

push constant 5

sub

...

Calling code (example)

VM subroutine
call-and-return
commands

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 13

Function commands in the VM language

Q: Why this particular syntax?

A: Because it simplifies the VM implementation (later).

function g nVars // here starts a function called g,
// which has nVars local variables

call g nArgs // invoke function g for its effect;
// nArgs arguments have already been pushed onto the stack

return // terminate execution and return control to the caller

function g nVars // here starts a function called g,
// which has nVars local variables

call g nArgs // invoke function g for its effect;
// nArgs arguments have already been pushed onto the stack

return // terminate execution and return control to the caller

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 14

Function call-and-return conventions

function mult 1

push constant 0

pop local 0 // result (local 0) = 0

label loop

... // rest of code ommitted

label end

push local 0 // push result

return

function mult 1

push constant 0

pop local 0 // result (local 0) = 0

label loop

... // rest of code ommitted

label end

push local 0 // push result

return

called function aka “callee” (example)

function demo 3

...

push constant 7

push constant 2

add

push constant 3

call mult

...

function demo 3

...

push constant 7

push constant 2

add

push constant 3

call mult

...

Calling function

Call-and-return programming convention

� The caller must push the necessary argument(s), call the callee, and wait for it to return

� Before the callee terminates (returns), it must push a return value

� At the point of return, the callee’s resources are recycled, the caller’s state is re-instated,
execution continues from the command just after the call

� Caller’s net effect: the arguments were replaced by the return value
(just like with primitive commands)

Behind the scene

� Recycling and re-instating subroutine resources and states is a major headache

� Some agent (either the VM or the compiler) should manage it behind the scene “like magic”

� In our implementation, the magic is VM / stack-based, and is considered a great CS gem.

Although not obvious in this
example, every VM function
has a private set of 5 memory
segments (local, argument,

this, that, pointer)

These resources exist as long
as the function is running.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 15

The function-call-and-return protocol

The caller’s view:

� When I start executing, my argument segment has been initialized with actual
argument values passed by the caller

� My local variables segment has been allocated and initialized to zero

� The static segment that I see has been set to the static segment of the VM file to
which I belong, and the working stack that I see is empty

� Before exiting, I must push a value onto the stack and then use the command return.

� When I start executing, my argument segment has been initialized with actual
argument values passed by the caller

� My local variables segment has been allocated and initialized to zero

� The static segment that I see has been set to the static segment of the VM file to
which I belong, and the working stack that I see is empty

� Before exiting, I must push a value onto the stack and then use the command return.

� Before calling a function g, I must push onto the stack as many
arguments as needed by g

� Next, I invoke the function using the command call g nArgs

� After g returns:

� The arguments that I pushed before the call have disappeared
from the stack, and a return value (that always exists)
appears at the top of the stack

� All my memory segments (local, argument, this, that,

pointer) are the same as before the call.

� Before calling a function g, I must push onto the stack as many
arguments as needed by g

� Next, I invoke the function using the command call g nArgs

� After g returns:

� The arguments that I pushed before the call have disappeared
from the stack, and a return value (that always exists)
appears at the top of the stack

� All my memory segments (local, argument, this, that,

pointer) are the same as before the call.

The callee’s (g ‘s) view:

Blue = VM function
writer’s responsibility

Black = black box magic,
delivered by the
VM implementation

Thus, the VM implementation
writer must worry about
the “black operations” only.

function g nVars

call g nArgs

return

function g nVars

call g nArgs

return

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 16

When function f calls function g, the VM implementation must:

� Save the return address within f ‘s code:
the address of the command just after the call

� Save the virtual segments of f

� Allocate, and initialize to 0, as many local variables as needed by g

� Set the local and argument segment pointers of g

� Transfer control to g.

When g terminates and control should return to f, the VM implementation must:

� Clear g ’s arguments and other junk from the stack

� Restore the virtual segments of f

� Transfer control back to f
(jump to the saved return address).

Q: How should we make all this work “like magic”?

A: We’ll use the stack cleverly.

The function-call-and-return protocol: the VM implementation view

function g nVars

call g nArgs

return

function g nVars

call g nArgs

return

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 17

The implementation of the VM’s stack on the host Hack RAM

Global stack:
the entire RAM area dedicated
to hold the stack

Working stack:
from SP onwards: the stack
that the current function sees

� At any point of time, only one
function (the current function)
is executing; other functions
may be waiting up the calling
chain

� Shaded areas: irrelevant to
the current function

� The current function sees
only the working stack, as
well as its virtual memory
segments

� The rest of the stack holds
the frozen states of all the
functions up the calling
hierarchy.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 18

Implementing the call g nArgs command

Implementation: If the VM is implemented as a program
that translates VM code into assembly code, the
translator must emit the above logic in assembly.

// In the course of implementing the code of f

// (the caller), we arrive to the command call g nArgs.

// we assume that nArgs arguments have been pushed

// onto the stack. What do we do next?

// We generate a symbol, let’s call it returnAddress;

// Next, we effect the following logic:

push returnAddress // saves the return address

push LCL // saves the LCL of f

push ARG // saves the ARG of f

push THIS // saves the THIS of f

push THAT // saves the THAT of f

ARG = SP-nArgs-5 // repositions SP for g

LCL = SP // repositions LCL for g

goto g // transfers control to g

returnAddress: // the generated symbol

// In the course of implementing the code of f

// (the caller), we arrive to the command call g nArgs.

// we assume that nArgs arguments have been pushed

// onto the stack. What do we do next?

// We generate a symbol, let’s call it returnAddress;

// Next, we effect the following logic:

push returnAddress // saves the return address

push LCL // saves the LCL of f

push ARG // saves the ARG of f

push THIS // saves the THIS of f

push THAT // saves the THAT of f

ARG = SP-nArgs-5 // repositions SP for g

LCL = SP // repositions LCL for g

goto g // transfers control to g

returnAddress: // the generated symbol

call g nArgscall g nArgs

None of this code is executed yet ...
At this point we are just generating
code (or simulating the VM code on
some platform)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 19

Implementing the function g nVars command

Implementation: If the VM is implemented as a program
that translates VM code into assembly code, the
translator must emit the above logic in assembly.

function g nVarsfunction g nVars

// to implement the command function g nVars,

// we effect the following logic:

g:

repeat nVars times:

push 0

// to implement the command function g nVars,

// we effect the following logic:

g:

repeat nVars times:

push 0

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 20

Implementing the return command

Implementation: If the VM is implemented as a program
that translates VM code into assembly code, the
translator must emit the above logic in assembly.

// In the course of implementing the code of g,

// we arrive to the command return.

// We assume that a return value has been pushed

// onto the stack.

// We effect the following logic:

frame = LCL // frame is a temp. variable

retAddr = *(frame-5) // retAddr is a temp. variable

*ARG = pop // repositions the return value

// for the caller

SP=ARG+1 // restores the caller’s SP

THAT = *(frame-1) // restores the caller’s THAT

THIS = *(frame-2) // restores the caller’s THIS

ARG = *(frame-3) // restores the caller’s ARG

LCL = *(frame-4) // restores the caller’s LCL

goto retAddr // goto returnAddress

// In the course of implementing the code of g,

// we arrive to the command return.

// We assume that a return value has been pushed

// onto the stack.

// We effect the following logic:

frame = LCL // frame is a temp. variable

retAddr = *(frame-5) // retAddr is a temp. variable

*ARG = pop // repositions the return value

// for the caller

SP=ARG+1 // restores the caller’s SP

THAT = *(frame-1) // restores the caller’s THAT

THIS = *(frame-2) // restores the caller’s THIS

ARG = *(frame-3) // restores the caller’s ARG

LCL = *(frame-4) // restores the caller’s LCL

goto retAddr // goto returnAddress

returnreturn

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 21

Bootstrapping

SP = 256 // initialize the stack pointer to 0x0100

call Sys.init // call the function that calls Main.main

SP = 256 // initialize the stack pointer to 0x0100

call Sys.init // call the function that calls Main.main

A high-level jack program (aka application) is a set of class files.
By a Jack convention, one class must be called Main, and this class must have at
least one function, called main.

The contract: when we tell the computer to execute a Jack program,
the function Main.main starts running

Implementation:

� After the program is compiled, each class file is translated into a .vm file

� The operating system is also implemented as a set of .vm files (aka “libraries”)
that co-exist alongside the program’s .vm files

� One of the OS libraries, called Sys.vm, includes a method called init.
The Sys.init function starts with some OS initialization code (we’ll deal with this
later, when we discuss the OS), then it does call Main.main

� Thus, to bootstrap, the VM implementation has to effect (e.g. in assembly),
the following operations:

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 22

� Extends the VM implementation described in the last lecture (chapter 7)

� The result: a single assembly program file with lots of agreed-upon symbols:

VM implementation over the Hack platform

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 23

Proposed API

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 24

Perspective
Benefits of the VM approach

� Code transportability: compiling for
different platforms requires replacing only
the VM implementation

� Language inter-operability: code of multiple
languages can be shared using the same VM

� Common software libraries

� Code mobility: Internet

� Some virtues of the modularity implied by
the VM approach to program translation:

� Improvements in the VM
implementation are shared by all
compilers above it

� Every new digital device with a VM
implementation gains immediate access
to an existing software base

� New programming languages can be
implemented easily using simple
compilers

. . .

VM language

RISC
machine
language

Hack
CISC

machine
language

. . .
written in

a high-level
language

. . .

VM
implementation

over CISC
platforms

VM imp.
over RISC
platforms

TranslatorVM
emulator

Some Other
language Jack

Some
compiler Some Other

compiler
compiler

. . .Some
language

. . .

Benefits of managed code:

� Security

� Array bounds, index checking, …

� Add-on code

� Etc.

VM Cons

� Performance.

